課程目錄:R語言機器學習學術應用培訓
4401 人關注
(78637/99817)
課程大綱:

          R語言機器學習學術應用培訓

 

 

 

R語言機器學習學術應用
基礎
Theory: Features of time series data and forecasting basics

R Lab: time series objects (libraries of timeSeries, xts, & mFilters)

中級
Statistical Learning (SL):

(0.5 Hour) One-step forecasting: one-step ahead model fit

(0.5 Hour) Multi-step forecasting: recursive and direct methods

(6 Hours) Linear models: ARIMAs, ETS, BATS, GAMS, Bagged; 案例實做與寫作范例

(5 hours) Nonlinear models: Neural Network, Smooth Transition, and AAR; 案例實做與寫作范例

R Lab: libraries of forecast, tyDyn, vars, and MSVAR.

Research Issues: unemployment forecasting, predictability of exchange rates and asset returns.

高級
Machine Learning (ML):

(3 Hours) Tree models and SVM (Support Vector Machine)

(6 Hours) Automatic ML for forecasting time series; 案例實做與寫作范例,涵蓋自動化演算6個機器學習方法:

(1) DRF (This includes both the Random Forest and Extremely Randomized Trees (XRT) models.)

(2) GLM

(3) XGBoost (XGBoost GBM)

(4) GBM (gradient boost machine)

(5) DeepLearning (Fully-connected multi-layer artificial neural network, not CNN/RNN LSTM)

(6) StackedEnsemble.

(6 Hours) Econometric machine learning- Causality by ML prediction; 案例實做與寫作范例

(3 Hours) Financial machine learning- Portfolio committees introduced; 案例實做與寫作范例

R Lab: libraries of h2o, kera, tensorflow.

Research issues: Granger causality, volatility forecasting, portfolio selection,

economic fundamentals of exchange rates

主站蜘蛛池模板: 色综合久久综合网观看| 久久精品桃花综合| 狠狠色综合网站久久久久久久高清| 成人综合伊人五月婷久久| 色综合久久久久综合体桃花网| 国产综合无码一区二区辣椒| 色拍自拍亚洲综合图区| 精品久久人人做人人爽综合| 欧美综合区综合久青草视频| 亚洲中文字幕无码久久综合网| 国产精品亚洲综合久久| 国产综合成人色产三级高清在线精品发布| 精品综合久久久久久88小说| 狠狠色丁香婷婷久久综合| 狠狠色丁香婷婷综合久久来来去| 亚洲综合网站色欲色欲| 久久综合狠狠综合久久97色| 欧美综合欧美视频| 色综合久久久久无码专区| 一本大道久久a久久精品综合| 国产综合亚洲专区在线| 亚洲狠狠色丁香婷婷综合| 亚洲综合久久综合激情久久| 色综合婷婷99| 99久久国产亚洲综合精品| 欧美一区二区三区久久综合| 一本一道久久精品综合| 亚洲AV综合色区无码一区| 久久婷婷五月综合国产尤物app| 成人精品综合免费视频| 精品亚洲综合久久中文字幕| 色综合色狠狠天天综合色| 激情综合色综合久久综合| 色综合天天综合婷婷伊人| 亚洲综合久久综合激情久久| 久久综合亚洲鲁鲁五月天| 人妻 日韩 欧美 综合 制服| 欧美日韩在线精品一区二区三区激情综合| 亚洲狠狠婷婷综合久久蜜芽| 亚洲色婷婷综合开心网| 久久狠狠爱亚洲综合影院|